Increased Glycogen Synthase Kinase-3β mRNA Level in the Hippocampus of Patients with Major Depression: A Study Using the Stanley Neuropathology Consortium Integrative Database
نویسندگان
چکیده
OBJECTIVE Glycogen synthase kinase-3β (GSK-3β) has become recognized as a broadly influential enzyme affecting diverse range of biological functions, including gene expression, cellular architecture, and apoptosis. The results of previous studies suggest that GSK-3β activity may be increased in the brain of patients with major depressive disorders (MDD). A recent animal study reported increased GSK-3β messenger ribonucleic acid (mRNA) level in the hippocampus of those with depression. However, few studies have investigated GSK-3β activity in the brain of patients with MDD. METHODS In order to test whether patients with MDD have an increase in GSK-3β activity in the brain compared to normal controls, we explored GSK-3β expression level in all brain regions by using the Stanley Neuropathology Consortium Integrative Database (SNCID), which is a web-based method of integrating the Stanley Medical Research Institute data sets. RESULTS The level of GSK-3β mRNA expression in the hippocampus was significantly increased in the MDD group (n=8) compared with the control group (n=12, p<0.05). Spearman's test also reveals that GSK-3β mRNA expression levels were significantly correlated with nitric oxide synthase 1 (NOS1)(ρ=0.70, p<0.0001) and stathmin-like 3 (STMN3)(ρ=0.70, p<0.0001) in the hippocampus. CONCLUSION Our results correspond with the results of previous animal studies that reported increased GSK-3β activity in the hippocampus of those with depression. Our findings also suggest that oxidative stress-induced neuronal cell death and abnormal synaptic plasticity in the hippocampus may play important roles in the pathophysiology of major depression.
منابع مشابه
Glycogen synthase kinase-3β may contribute to neuroprotective effects of Sargassum oligocystum against amyloid-beta in neuronal SH-SY5Y cells
Glycogen synthase kinase (GSK)-3β mediates amyloid-beta (Aβ) and oxidative stress-induced neurotoxicity in neurodegenerative disorders. Natural products with antioxidant activity, such as Sargassum (S.) oligocystum may modulate GSK-3β enzyme and protect against Aβ-induced neurotoxicity. Therefore, we aimed to assess the neuroprotective effects of a methanolic extract of S. oligocystum against A...
متن کاملThe Potential Role of Glycogen Synthase Kinase-3β in Neuropathy-Induced Apoptosis in Spinal Cord
Introduction: Glycogen Synthase Kinase-3β (GSK-3β) participates in several signaling pathways and plays a crucial role in neurodegenerative diseases, inflammation, and neuropathic pain. The ratio of phosphorylated GSK-3β over total GSK-3β (p-GSK-3β/t-GSK-3β) is reduced following nerve injury. Apoptosis is a hallmark of many neuronal dysfunctions in the context of neuropathic pain. Thus, this st...
متن کاملThe neuroprotective mechanism of cinnamaldehyde against amyloid-β in neuronal SHSY5Y cell line: The role of N-methyl-D-aspartate, ryanodine, and adenosine receptors and glycogen synthase kinase-3β
Objective: Cinnamaldehyde may be responsible for some health benefits of cinnamon such as its neuroprotective effects. We aimed to investigate the cinnamaldehyde neuroprotective effects against amyloid beta (Aβ) in neuronal SHSY5Y cells and evaluate the contribution of N-methyl-D-aspartate (NMDA), ryanodine, and adenosine receptors and glycogen ...
متن کاملTreadmill exercise activates PI3K/Akt signaling pathway leading to GSK-3β inhibition in the social isolated rat pups
Social isolation is known to precipitate depression-like symptoms in rodents and has emerged as a dependable paradigm to screen the behavioral and neurobiological changes observed in humans. In the present study, the undying mechanisms of treadmill exercise on social isolation-induced depression was evaluated. The rat pups in the social isolation groups were housed individually. The social isol...
متن کاملOkadaic acid-induced Tau phosphorylation in rat brain: role of NMDA receptor.
Okadaic acid (OKA) is a potent inhibitor of protein phosphatases 1/2A (PP2A). Inhibition of PP2A leads to hyperphosphorylation of Tau protein. Hyperphosphorylated Tau protein is present in intraneuronal neurofibrillary tangles a characteristic feature of neuropathology of Alzheimer's disease. Intracerebroventricular (ICV) administration of OKA causes neurotoxicity, which is associated with incr...
متن کامل